
JOURNAL OF COMPUTATIONAL PHYSJCS 5, 34-55 (1970) 

Bubble-Chamber Picture Processing Through Digital Filtering 

JENO GAZDAG 

IBM Scimiijic Ccnrcr, Palo Alto, CaUfomia 94304 

Received May 13, 1969 

A method is presented for the decomposition of bubble-chamber pictures. Two 
illustrative examples are discussed. One is the suppression of beam tracks. The other 
deals with the isolation of event tracks from a noisy background. The scheme makes 
effective use of finite Fourier transform methods. 

1. INTR~DU~~~N 

Bubble chamber picture processing represents a major task in high-energy 
physics experiments. An experiment may involve tens or hundreds of thousands 
of stereo photographs of particle tracks. Computers play an increasingly important 
role in the processing of the data derived from these pictures. Almost all phases 
of the picture processing have been computerized to a greater or lesser degree [l-6]. 

The automation of the “scanning” phase has proved to be the most difficult and 
for the most part it is carried out by trained personnel. The trained observers, 
who are called scanners, scan the photographs for some track configuration 
specified by the experimenter. The interesting events, as identified by the scanner, 
are extracted and translated by means of “measuring” machines to suit the digital 
computer performing the subsequent processing steps such as the “geometry- 
kinematics” task. The computerization of the scanning task would represent a 
major step toward the realization of the complete automation of bubble chamber 
picture processing. 

One of the significant efforts toward the automation of the scanning operation 
is represented by the PEPR System [3,4]. To detect straight-track segments the 
PEPR hardware utilizes an electronically generated rotatable flying-line segment 
on the face of a cathode-ray tube. This line segment can be swept over the same 
portion of the film oriented in any desired direction in steps of 1”. Detection of 
track elements is accomplished by sweeping the line segment in one of two 
perpendicular directions and analyzing the output of the photomultiplier tube. 

34 



BUBBLE CHAMBER PICTURE PROCE!WNG 35 

Data acquisition from the film is often performed by flying spot digitizers 
[I, 2,5,6]. The digitized picture is a collection of “hits” specified over some 
rectangular grid. As part of the automatic scanning process these hits must be 
tested for some geometrical relationship with respect to their neighbors. The 
outcome of these local processings can serve to detect track segments. In a sub- 
sequent stage of processing, these segments can be linked together into complete 
tracks [5]. 

To perform the scanning operations with little or no human assistance demands 
reliable and efficient techniques for the discrimination among many types of 
picture elements. This task is complicated by the very poor signal to noise ratio of 
the digitized pictures. At the local processing level such operations include the 
detection of track segments in noisy background. Selective discrimination among 
different types of line or curve segments is another example. These requirements 
call for some general method to isolate certain sets of picture elements defined 
by arbitrary functions. In certain cases these functions may be complex valued 
as one of the examples discussed in this paper. 

The filtering method described in this paper offers a flexible and versatile 
approach to the problem of decomposing pictures into subpictures consisting of 
different sets of picture elements. It relies on the use of finite Fourier transform 
methods. As a result, it allows for a wide range of selective operations with 
essentially no, or very few, changes in the problem program. The changes in the 
filtering strategy are accomplished by changing the interaction function which 
is represented by a data set. This feature is particularly attractive if we think of 
filtering steps whose strategy depends on the results of another, previously executed 
computational step. The effectiveness of the method would be significantly 
incremented by the use of special-purpose devices. 

2. REPRESENTATION OF PICTURES 

A picture is treated as a collection of picture elements. These elements serve as 
building blocks, tied together by some rules of correspondence or grammar. 
They may assume various degrees of sophistication or complexity. It is logical 
to think of higher-order picture elements as a set of more primitive elements 
which satisfy some geometrical and/or logical constraints. Just as in speech, where 
we meet with phonemes, syllables, words, etc., an effective picture-description 
language should also be capable of handling a variety of elements of different levels 
of complexity. 

Let us consider a bubble-chamber picture containing an event and no 
background. The information about this picture can be conveyed by listing the 
physical characteristics it represents, such as the type of the event, the name of 
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the particles, energy, mass, etc. Essentially the same information can be transmitted 
by specifying the set of tracks 

(1) 
with all the parameters necessary to provide a complete description in three 
dimensions. The computational problems related to the transitions from Fig. l-c 
to l-d have been studied in great detail [7, 81. 

a. b. C. li. 
List of Digitizing List of Track Segments List of Tracks with Description of Event 

Parameters 

FIG. 1. Picture representations. 

A picture composed of these tracks (Fig. l-c) could be specified as a set of 
track segments 

p = mi ,***, m)l, (2) 

or as a set of digitizings 

p = mei 7 r2 2 41, (3) 

in which case the three parameters represent the position and the magnitude. 
If the digitizings are binary valued the picture is defined by a set of “hits” 

p = ML 41, 

where (j, k) refers to the netpointl location of the hit. 

(4) 

Any set of these specifications (l-4) can contain all the information which is 
relevant to the experimenter. One format may be more redundant than the other, 
requiring more storage space and different considerations, etc. What is of primary 
importance from the standpoint of pictorial data interpretation is, however, 
the question of compatibility or suitability of a given representation for some 
purpose. The unprocessed bubble-chamber picture, for example, is presented to 
the computer as a set of hits (Fig. l-a). This format, however, is not suitable for the 
purposes of human communications. The experimenter wishes to express his 
findings and conclusions in terms of the concepts and units represented by Fig. l-d. 

1 A point of a rectangular lattice in the picture plane. 
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The basic issue in pictorial data interpretation (or pattern recognition) is the 
computer simulation of the process whereby the digitized picture is decoded and 
expressed in terms of higher-level describing units which are integral parts of the 
experimenter’s language. 

3. ANALYSIS OF THE SCANNING OPERATION 

One of the basic functions of the scanning operation is to describe some part 
of the picture in terms of higher-level picture elements or units which are acceptable 
to the experimenter. In view of Fig. 1 this means a process which accepts the 
digitized picture as an input (the scanner is assumed to be the computer) and 
yields the desirable picture description in the desired format. This process will be 
referred to as “decoding.” The term “encoding” is reserved for the process of 
recording the information about the event in the form of pictures. 

The second important function of the scanning task is to isolate some small 
subset of the picture from the rest. The reason for this is to provide the experimenter 
the data in which he is interested. This process will be referred to as “filtering.” 

These two major operations, in the sense described above, should be regarded as 
integral parts of any type of pictorial data interpretation. Different applications 
require different units, or building blocks, and the transitions from lower- to 
higher-level picture elements are regulated by different sets of rules. Similarly the 
rules of the filtering steps vary from one application to another. In principle, 
however, any pictorial data interpretation task can be viewed as a sequence of such 
filtering and decoding operations. 

By considering an event composed of a small number of tracks and disregarding 
the background, we come to the conclusion that the computerization of the 
decoding process should not represent an insurmountable difficulty. The translation 
of hits into track segments and the formation of tracks from these track segments 
are relatively simple operations. The problem appears to be that these event tracks 
are imbedded in a rather complicated background resulting in poor signal to noise 
ratio (S/N g 10-2-10-3) in the digitized picture. The major difficulty is encountered 
when trying to isolate the relevant subset of the picture from the rest. To learn 
how to disregard the unwanted data is important in many respects. Besides the 
inconveniences arising from the handling and processing of extra amounts of data, 
the noise can be a source of misinterpretation in any phase of the data processing. 

A direct computer simulation of the human scanner is quite unlikely even in the 
distant future. To ‘6pay attention” to some features of a picture and to “ignore” 
others as the human does, can represent very complex and, perhaps, rather 
“unnatural” tasks for the computer. It appears to be more convenient (from the 
standpoint of the digital computer at least) to follow an approach based on picture 
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decomposition. The basic picture decomposition process can be regarded as a 
simple filtering operation as shown in Fig. 2. The subpicture PI is formed by those 
picture elements of PO which satisfy certain criteria with respect to their environ- 

.k P&j. kl 
Filter 

P,(j, k) 

+- -1 P21j,kl 

P*‘PO-P1 -I _ I 

FIG. 2. Picture decomposition through filtering. 

ment. The P, is the complement of PI with respect to PO . As an example, we may 
think of a picture P,, as being composed of “solid objects” and “line like” objects. 
A perfectly reasonable objective might be to decompose PO into two subpictures, 
one composed of the solid objects and the other of the lines. These subpictures 
could be subjected to further decompositions if necessary. The objective is to 
obtain subpictures on which the decoding operations can be performed with 
relatively little effort. It should also be observed that further processing of a given 
subpicture can be accomplished without any interference from the rest of the 
picture elements. The decomposition of the picture enables the machine to 
disregard those features of the picture which represent no information in a given 
processing step. 

4. THEORY OF PICTURE DECXMP~SII-ION 

The digitized bubble-chamber picture can be represented as a double sequence 
of numbers 

P = P(j,k); j = o,..., N - 1, k = o,..., M - 1. (5) 

Most often P is a binary-valued function. The value P(j, k) = 1 signifies the 
presence of a “hit” at the netpoint ( j, k), whereas the zero value implies its absence. 
Most of the computations for pattern recognition purposes can be performed on a 
coarser grid than the one required for the final analysis. Such pictures, obtained 
through blobbing would not necessarily be binary valued. In the following 
description the picture elements are assumed to be hits in order to facilitate the 
discussion. All arguments hold for nonbinary pictures as well. 

Let the unprocessed picture be denoted by 

PO = pl4.L 0 (6) 
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The objective is to decompose this picture into the following two subpictures: 

Pl = Pl(i, 4, (7) 

pz = Pz( j, w, (8) 

in such a way that all the hits of PI, 

Hl = (hli ; i = 1, L,}, (9) 

possess a certain set of properties not possessed by the hits of Pz 

The individual “hits,” which are the most primitive picture elements if taken 
“out of context,” have very little if any significance to the experimenter. The 
information which they convey is encoded in their structure or their relative 
position with respect to each other. This is to say that the significance of an element 
depends almost entirely on its environment. Stated conversely, each element exerts 
some influence on the elements in its neighborhood of a given size. The quantitative 
measure of this effect is expressed by the interaction function 

@ = w, M, (11) 

whose value can be either real or complex number. In some applications @ may 
need to be a vector with real or complex components. The interaction function 
should be interpreted as the action or influence which a hit, h(0, 0), placed at the 
origin, exerts at another one, h(j, k), placed at the netpoint (j, k). 

Some analogy can be seen between the interaction function concept of an 
element and the electric field intensity of an electric charge. We notice, however, 
that while the field intensity of an electric charge is governed by the law of nature, 
the interaction function Q, is tailored to the goal of the processing step. 

By means of the interaction function we can compute the effect of all the picture 
elements over the entire picture domain. This is expressed by the following 
expression: 

N-lhf-1 

Yo(j, w = c c w - r, k - s) Po(r, s). 
r=O 8=0 

w 

The term ?Po will be called the interaction field of the picture PO with respect to CD. 
The interaction field can then be used to make a decision about a hit h,(j, k). 
This is a simple binary decision, i.e., the hit is classified to be in either of the two 
sets HI or H8 but not both. This can be expressed as follows: 

f’d j, 4 = Po(i, J4 Qcyo(i, Q, T), (13) 
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where Q(?P&, k), r) is some decision function with values zero and one. The 
parameter T represents the constraint upon which the decision is made. In the 
simplest applications T is likely to represent a threshold. 

The block diagram of the filtering process is shown in Fig. 3. A very significant 
portion of the entire computation time is taken up by the computation of YO. 
There are two alternative methods shown in Fig. 3 to do this. These are indicated 

pO 

f ‘t 

PO GO 
* ZBtj-r. k-9 Po(r,sl 

Q 
A* Q - 

p1 
Multiply -C 

Fourier Transform 

FIG. 3. Block diagram representation of the filtering process. 

by paths (1) and (2) in the diagram. The computation of Y,, directly from (12) can 
be simulated by making use of finite Fourier transform techniques. The sequence 
of computations is seen by following path (2) in Fig. 3. The tilde placed over the 
letter denotes the Fourier transform of the function. That these two paths yield 
the same interaction field, YO , is seen as the result of Theorem A-2 which is 
expressed by (A-12) and (A-13) for the two-dimensional case of the Appendix. 

There is one important point which must be remembered. If we follow the second 
path, i.e., the sequence 

Po(.i 4 -+ fjoi,(n, 4, 
w, 4 = mn, 4 %, 4, (14) 
%, m) - w, a 

the periodic repetition of the picture and the other functions must be assumed. 
In order to avoid the undesirable “wrap around” effects, it may be necessary to 
work on somewhat larger domain than that of the picture. The netpoints 
augmenting the picture domain would have zero values. This is hardly necessary 
in the case of bubble-chamber pictures and will not be elaborated any further. 
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5. APPLICATIONS TO BUBBLE-CHAMBER PICTURE PROCESSING 

A typical bubble-chamber picture consists of particle tracks and background. 
Any set of “hits” which does not appear to belong to an image of a track is con- 
sidered background. The particle tracks may be classified into two types: beam 
tracks and event tracks. The beam tracks appear as a set of almost parallel curves 
of small curvature. They correspond to those particles that pass through the 
chamber and undergo neither spontaneous decay nor interaction with another 
object. Some of the beam tracks, however, are observed to furcate into several 
new particle tracks. This marks the occurrence of an event. The point in space in 
which the beam track terminates is called the vertex of the event. 

Aside from some information regarding the immediate neighborhood of the 
vertex, the beam tracks serve no purpose and, in fact, represent noise. The 
elimination of the beam tracks from the picture represents in general the greatest 
amount of noise reduction that can be achieved. This can be seen by comparing 
the original and the filtered pictures shown in Figs. 4 and 5. Further details on the 
filtering technique are given in the next section. 

a. Original b. Processed 
FIG. 4. Suppression of beamtracks in bubble-chamber pictures. 

Aside from the five fiducial marks, and the scratches on the windows of the 
bubble chamber, the filtered pictures (Figs. 4-b and 5-b) do not contain any 
“noise” which has a definite structure. The noise part of the picture is rather 
unpredictable. Perhaps the most meaningful assumption which we can make 
about the noise at this stage is the following: since the hits contributing to the 
noise do not belong to the event tracks, it is quite unlikely that the noise would 
appear in the form of line-like patterns similar to the event tracks. Therefore a 
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a. Original b. Processed 

FIG. 5. Suppression of beamtracks in bubble-chamber pictures. 

filter capable of retaining objects resembling event tracks could be effectively 
employed for further noise reduction. For this purpose, an interaction function 
whose goal is to preserve hits which are members of straight-line segments and 
reject randomly-scattered hits has been developed. This requires a complex 
valued interaction function which is described in Section 7. The filtering process 
is illustrated through the pictures shown in Fig. 6. Fig. 6a shows a picture con- 
taining straight lines in random noise. Fig. 6b and 6c show two filtered versions 
of the original (Fig. 6a) with two different parameter (T) settings. 

These examples represent the most obvious filtering steps applicable to bubble- 
chamber picture processing. It is equally feasible to perform decomposition into 
subpictures, each composed of tracks whose direction is between some specified 
limits. The curvature parameter could also be used in addition to or instead of the 
direction specification as a criterion for selective filtering. 

In the following discussion regarding the filter specifications the beam tracks 
are assumed to be straight lines. From the practical standpoint the validity of this 
assumption depends on the experiment and other factors such as, for example, 
the length of the track segment under consideration and the accuracy demanded 
from the process. Since the curvature of the beam tracks is some known function 
of the external magnetic field it is possible to perform a simple shifting trans- 
formation on the entire picture in order to “straighten out” the beam tracks. 
This must, of course, be corrected in a later step. 

The direction of the beam tracks is usually known approximately. For more 
accurate information on this parameter it may be necessary to do some histo- 
gramming over certain part of the picture. An efficient and elegant method exists 
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We recall (5) that the digitized bubble-chamber picture 

P = P(j,k); (j, 4 E E (15) 

is defined on a rectangular net 

E={(j,k)IO<j<N-l,O<k<M-1}, (16) 

of N X M size. The discussion will be facilitated by the introduction of the domain 

Rp={(x,y)l--E,<x\(N-1+-t,-•r,<y~M-l++}, (17) 

where 

O<r<l. w 

a. b. 

FIG. 6. Preservation of lines. Original (a) with two processed picture-s (b and c). 

for this purpose if the Fourier transform of the picture is available. The com- 

putations are performed over the frequency plane rather than the picture plane. 

This direction finding algorithm, although it is the outgrowth of the filtering work 

discussed here, has more relevance to the decoding process and will be discussed 

in a forthcoming report. 

6. FILTER DESIGN FOR BEAM-TRACK SUPPRFSS~ON 

c. 
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The picture (15) will be represented on Rp as 

M-l N-l 

fv, Y> = c c w, k) 66 -A Y - 4, (19) ,+(I j=o 

where 6(x - j, y - k) is the familiar delta function with the following properties 

and also 

ktr’ 
i I 

it,’ 
6(x-j,y-k)dxdy= 1; (j, k) E E (20) k--E’ i-r’ 

6(x-j,y-k)=O; (x, Y) 4 4 (21) 

kfE’ I s C-L’ P(x, Y) dx 4 = W, 4; (.A k) E E, (22) 
k--r’ i-c’ 

where 
E’ < E. (23) 

Let us consider the following interaction function: 

where 

&c, y) = 1, {(x, y)l --r < AX G r, --w < ZX < ~1 

9(x, Y) = 0, elsewhere on R, 
(24) 

R={(x,y)l--N~xdN,--M~ydM}. 

The vector notations in (24) stand for 

x = 6, Y) 

A = (a, b) = (cos 8, sin e) 

Z = (-4, a) = (-sin 8, cos 0) 

(25) 

(26) 

(27) 

(28) 

whose meaning can be seen in Fig. 7. The ~(x, y) assumes nonzero value over 
a rectangular subset of R. Because of its shape it will be referred to as a “simple 
rectangular slit.” It should be noted that @(j, k) (11) is the sampled (digitized) 
equivalent of cp(x, y). The unit vectors A and Z designate the direction of the slit 
and its normal. The length and the width of the slit are 2r and 2~ respectively. 

The expression for the nonsampled field-intensity function that corresponds to 
(12) is 

Vx’, Y’) = j-,, j” dx - x, Y’ - Y) W, Y) dx d.. (29) 
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FIG. 7. The simple rectangular slit. 

In view of the inversion type symmetry of (24) we have 

& Y) = d-x, -Yh 

whose substitution into (29) gives 

(30) 

Y(x’, y’) = j-,, j- q~(x - x’, Y - Y’) P(x, Y) dx dy. (31) 

This, however, is equivalent to the integral of P(x, y) over the area 

D={(x,y)I--r<A(X-X’)<r,-w<Z(X-X’)<w}, (32) 

which is covered by the slit centered at (x’, y’) as shown in Fig. 7, i.e., 

W, Y’) = s, j JYx, Y) dx 0. 

/ 

(33) 

By considering Eqs. 20-22 we can conclude that (33) represents the total number 
of hits covered by the slit displaced at (x’, y’). If the slit is made sufficiently narrow, 
(33) gives a good approximation to the number of hits along a straight line segment. 
Thus Y(j, k) can serve as a quantitative measure of likelihood for netpoint (j, k) 
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being a member of a track segment of length 2r directed along A. If we let T be the 
lower bound for the number of such hits, the decision function (13) 

(34) 

could be used to suppress the beam tracks whose directions agree with A. 
The pictures which are shown in Figs. 4 and 5 were processed by a modified 

version of (24). 

~&~,~)=1,{(x,y)=1~r’~lAX~~r,-w~ZX~w). 
(35) 

%n(X, Y) = 0, otherwise. 

The q,,, takes into account those hits which are between r’ and r distance away 
from the point of computation. Its shape is shown by the solid lines in Fig. 8 

FIG. 8. The modified rectangular slit. 

The application of (35) assures better accuracy than (24). A possible improvement 
of IJI,,, would be to augment it with four negatively weighted rectangular slits as 
shown by dashed lines in Fig. 8. TJris extension was not implemented in these 
experiments. 

The sampled or discrete Fourier transform of the (24) or (35) can be obtained 
in two different ways. The ‘p can be sampled and Fourier transformed. Another 
alternative is to sample the analytic expressions representing the Fourier transform 
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of (24) or (35). The Fourier transform of the simple rectangular slit shown in 
Fig. 7 is 

cp(Jz 
, 
A) = 4 sin(AQw) . (sin(m) 

ASL ZGI * (36) 

The vector 8 stands for (& r)) which are the spatial-frequency variables. The 
Fourier transform of (35) or any function composed of rectangular elements 
can be expressed in terms of (36) by making use of Theorems A-l and A-3 given 
in the Appendix. 

7. FILTER FOR THE PRESERVATION OF TRACKS 

Let us consider the interaction function 

where i = 2/-l and c is a nonzero integer. Since 

or 
94x9 Y) = (PC--4 -Y), 

Fe, 0) = dr, 0 + 4 

the field intensity function (24) can be written as 

Y(x’, Y’) = JR, j- dir - x’, Y - Y’) Wx, Y) dx 4. 

(37) 

This is a weighted sum of all hits within the circle of radius R centered at (x’, y’). 
The weighting factors are complex vectors of unit modulus, e18ce, where the angle 0 
represents the relative direction between the picture element (x, y) and the point 
of computation (x’, y’) as shown in Fig. 9. The contribution from each of the 
hits of L is 

~lpe’ , (39) 

if I, is the number of hits of L within the circle of R radius. These hits reinforce 
each other in their contribution to (38). This is not the case with the hits of L, . The 
angle 8” changes as we move along La . Therefore each hit of L, contributes to (38) 
a complex vector of unit modulus but whose direction is different from those due 
to its immediate neighbors. If c and R are large, the sum of these vectors will be 
negligibly small in comparison to (39) due to the cancellations among them. The 
net contributions from randomly scattered solid objects are also subject to 
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Y 

FIG. 9. Interaction function for track preservation. 

cancellation. Larger solid objects, such as 01 of Fig. 9 are also integrated out 
especially if 

cci > 7r. 

The filter whose purpose is to preserve straight lines (Fig. 6) compares the modulus 
of (38) to some predetermined value T, i.e., 

The filtering process whose results are shown in Fig. 6 was accomplished by a 
modified version of (37). First, the shape of the domain was changed from a circle 
to an annulus. The motivations for this are similar to those which explain why 
Fig. 8 is more accurate than Fig. 7, The other modification is necessary to take 
into account the variations between neighboring hits of straight lines as a function 
of their directions. 

8. COMPUTATIONAL CONSIDERATIONS 

The computation of the Fourier transform of a complex function with N sample 
points requires [9, p. 231 

N(3 log, N - 5/2) real additions, (41) 
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and 
N(2 log, N - 5) real multiplications. (42) 

Assuming equal time for addition and multiplication, (41) and (42) represent 

N(5 log, N - 1512) real operations (43) 

From this we can determine the requirements for a two-dimensional array of size 
N x M. Assuming the transformations of the rows followed by that of the columns, 
the operational requirements are 

NM(5 log, NM - 15) real operations. w 

By allowing 6NM operations for the multiplication step, the total number of real 
operations required for the execution of entire loop 2 of Fig. 3 is 

NM(10 log, NM - 30 + 6). (45) 

It can be shown [9] that the transform of two real functions can be obtained 
simultaneously. Thus for real functions (45) becomes 

NM(5 log, NM - 12). (46) 

The computation of Y,, through the summation suggested by loop 1 of Fig. 3 
would demand 

2pNM real operations, (47) 

if we assume an addition and a multiplication for each of the p number of nonzero 
elements of @. By equating (46) and (47) and expressing 1-1 we get 

p. = 2.5 log, NM - 6, (48) 

which represents the breakeven figure between the two methods of computing Y,, 
as shown in Fig. 3. For example, in the case of a 128 x 128 size picture (48) gives 

p = 29. (49) 

This applies for real valued interaction functions. The transform methods 
require relatively fewer operations if CD is a vector or if more than one simple 
filtering is to be performed on the same picture. The reason for this is that the 
transformation of P,, needs to be performed only once regardless of Qi. For example, 
in the case of the processing shown in Fig. 6 which requires a complex valued 
interaction function such as (37) the breakeven figure for the mask size would be 
less than (49), i.e., 

p’ E 22 - 23 w-0 

The number of netpoints covered by the mask of the interaction function may 
range from as low as 20 to as high as several hundred, as in the case of Fig. 9. 
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From the standpoint of programming the transform methods also offer some 
advantages. A program can be used in several different filtering steps. Operational 
changes are accomplished by changing the interaction function (a data set) with 
no significant changes in the program itself. This feature can be particularly useful 
when the titer parameters depend strongly on the autcome of the previously 
executed step. This would be the case if little is known about the nature of the 
picture elements at the beginning of the computation. 

The computer program to simulate the Wering process shown in Fig. 3 (loop 2) 
was written in the FORTRAN language. The program utilizes the Fourier trans- 
form subroutine HARM [lo]. Transformations are first performed over the rows 
followed by the transformation of the resultant columns.* The pictures shown 
in Figs. 4,5, and 6 were taken by a camera mounted on an IBM 2250 Display Unit. 

The advantages offered by the transform methods could be significantly increased 
by the use of special-purpose hardware. The hypothetical system configuration 
shown in Fig. 10 suggests one method of utilizing such a Fourier Transform 

Fourier 
Transform - Channel 
Computer 

Main 
Storage 

1 
Central 

Processing 
Unit 

FIG. 10. A basic FTC system configuration. 

Computer (FTC). The FTC is a computer attachment which can operate 
independently from the CPU once a channel command program has been initiated. 
The FTC may contain a buffer for its internal processing and for data storage. 
This permits the transferring of a block of data from the main storage to the FTC. 
It is processed independently of the CPU and then transferred back to the main 
storage. This approach releases the CPU memory and channel for other processing. 

9. CONCLUDING REMARKS 

The purpose of this paper was to present a method for picture decomposition 
through selective filtering performed on the picture elements. Although no other 
areas of applications than the bubble-chamber picture processing were considered, 
the method can be useful in many fields of pictorial data interpretation. The noise 

* By rows and columm of P(j, k) we mean the netpoints m to some constant 
values of k and j respectively. 



BUBBLE CHAMBER PICTURE PROCESSING 51 

reduction and the ability to focus attention on the information bearing elements are 
important prerequisites to other experimental data interpretation problems as well. 

The customary trade-off between quality of performance and computation cost 
is apparent here too. The pictures of Figs. 4 and 5 were processed over a 64 x 256 
grid with no corrections for the bending of the beam tracks. The implementation 
of such corrections and/or processing the picture on a finer grid would yield 
improved performance. In the case of very noisy pictures the performance criteria 
may require the application of interaction functions of higher dimensions. Taking 
Eq. 37 as an example, the third component would permit one to associate each 
hit with a three-dimensional unit vector. The decisions based on a three-dimensional 
function (39) would be less sensitive to errors due to chances and coincidences. 
The additional information derived from the extra dimension could also serve as a 
quantitative measure of some neighborhood of the point of computation. If this 
is used to influence the parameters of the decision function (40), the resulting 
scheme is an adaptive one which may be valuable to offset the effects of local 
variations due to the environmental conditions. 

This filtering method was intended to serve as a “building block” in complex 
picture-processing programs. Because of the importance of keeping the cost of 
computation below some practical threshold, these programs should be capable 
of isolating the information bearing elements with little computational effort. 
It can be conjectured that an efficient method for the elimination of noise can be 
best realized as a sequence of decoding and filtering operations. The successive 
steps should utilize the information derived from the outcome of the preceding 
computational steps. Each processing step of this goal directed sequence is aimed 
at data reduction and the isolation of the event to a smaller subset of the picture 
grid. As the data is being reduced the precision and sophistication of the filtering 
and decoding operations may be increased. The filtering method suggested in 
this paper can be used conveniently in such a multi-level or hierarchical structure. 
The operational changes are accomplished by using a different interaction function 
(@, Fig. 3) with no significant changes in the filtering program itself. Thus the 
same program is used in different processing steps. The advantages derived from 
the versatility of the method are augmented by the speed of the fast Fourier 
transform algorithm. 

APPENDIX: CERTAIN PROPERTIES OF THE FINITE FOURIER TRANSFORMS 

Let A(j), j = 0, l,..., N - 1, be a sequence of complex numbers. The finite 
Fourier transform of A(,j) is defined as 

N-l 
d(n) = c A(j)exp(-i2mQ/N), 

i-0 
(A-1) 
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where i = (-l)ll*. In this paper the mark tilde placed over the letter signifies 
the Fourier transform of the function. We will let 

W, = exp(i2vIN). (A-2) 

In view of (A-2) Eq. (A-l) becomes 

N-l 

A(n) = c A(j) w,-i. 
j=O 

(A-3) 

Given A(n), A(j) can be obtained by inverse Fourier transforming &); i.e., 

A(j) = f Ny A(n) WY. 
n=o 

(A-4) 

That (A-3) and (A-4) are transform pairs is seen by substituting one into the 
other and observing that 

N-l 

c 
w;nj = nrmmodN 

j=O otherwise. (A-5) 

Fourier transform pairs will be denoted by a double arrow between them, i.e., 

48 * 44. 

The exponential function W$, as a function of n and j is periodic of period N; 
i.e., 

w$ = wN(n+N)i = wnNG’+N). (A-6) 

Hence the function A(j) and A(n) as defined by their transforms, (A-3) and (A-4), 
are periodic of period N. This means that 

A(j) = A(rN + j) r = 0, f 1, &2 ,..., and 
&z) = &N + n) r = 0, &l, f2 ,... . (A-7) 

A fundamental property of the finite Fourier transform is that it is a linear 
operation 

THEOREM A-l. If 

m * 44, 

then for any complex constants a and b 

aA + bB(j) +-) a&) + b&h 
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One of the most important properties of the finite Fourier transform is related 
to the transform of the convolution of two sequences. This transform turns out 
to be the product of the transforms as in the usual Fourier analysis. We will make 
extensive use of this property which is expressed by 

THEOREM A-2. If 
AtA t+ A(n), 

and 
B(j) ++ &4, 

then 
N-l N-l 

z. .4(r) JW - r) = ,F6 4 - r> B(r) 4-+ 44 44 

Pro05 

(A-8) 

Now using the orthogonality relationship (A-5) we have 

N-l 

C A(r) B(j - r) = $ y A(n) B(n) W,“j (A-9) 
r=o ?l=O 

The finite Fourier transform can be generalized into any number of dimensions. 
LetA(j,k),j=O,l,..., N- l;k=O,l,..., M - 1, be two-dimensional sequence 
of complex numbers. Its finite Fourier transform A(n, m), n = 0, l,..., N - 1; 
m = 0, l,..., M - 1, is given by 

N-l M-l 

A(n, m) = 1 c A(j, k) WiinWGkm. 
b0 k=O 

(A-10) 

The inverse relationship is 

4.h 4 = & y y A(n,m) WFWZ. (A-l 1) 
n=o m=o 

The convolution relationship (Thm. A-2) for the two-dimensional case reads 
as follows: If 

and 
AU, 4 * A@, ml, 

Nj, k) - &n, ml, 
(A-12) 
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N-l&f-l 
c c A(r, s) B(j - r, k - s) t-) A(n, m) &, m). 
r=o s-0 

(A-13) 

The following theorem describes the relationship between transform pairs when 
one is shifted. 

THEOREM A-3. Zf 

then 

Proof. 

4 

4.L k) ++ A+, 4, (A-14) 

A(j - r, k - s) +-+ A+, m) W;nsW$“s (A-l 5) 

We define the double sequence 6( j, k) by 

W, k) = 1, if j=k=O 

Xi, k) = 0, otherwise. 

The finite Fourier transform of this sequence is given by 

8(j,k)tt 1. (A-16) 

This can be verified by substituting 6( j, k) into (A-10). Similarly, we can show 
that 

(A-17) 
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